New Figure 2

>> fig_pap_elegans_16(1,zeros(100))

Advertisements

New Figure 1

>> fig_pap_presentacion_08(3,zeros(100))

New figures for E. coli (definitive)

For maintenance, the final figure is the one in previous post.

Summary of results:

 

D=0.05

D=0.1

D=0.2

D=0.3

D=0.4

Delta for main plots

1.5

1.99

2.54

4.22

5.31

p_growth (main plots)

0.01

0.0058

2.0000e-004

4.8000e-004

6.2000e-004

p_ATP (main plots)

NaN

0.1739

0.2399

0.0854

0.1211

max(p_growth) (all Deltas)

0.0187

0.0383

0.0517

0.0024

0.0011

min(p_ATP) (all Deltas)

NaN

0.0920

0.0302

0.0280

0.0245

 

Growth 0.05 (maybe not final, maybe will not be included):

>> fig_pap_coli_13(1,0,.05)

Growth 0.1:
>> fig_pap_coli_13(1,0,.1)

>> fig_pap_coli_13(1,0,.2)

>> fig_pap_coli_13(1,0,.3)

>> fig_pap_coli_13(1,0,.4)

New figures for E. coli (not definitive)

Maintenance:

>> fig_pap_coli_mantenimiento_02(1)

Figures for growth 0.1, 0.2, 0.3 and 0.4, respectively:

>> fig_pap_coli_13(1,0,.1)

>> fig_pap_coli_13(1,0,.2)

>> fig_pap_coli_13(1,0,.3)

>> fig_pap_coli_13(1,0,.4)

Calibration of the metric for E. coli: Preliminary results

I use the model for growth that is used in Figure 4.

fig_pap_coli_11(1,0)

(and use internal variables from now on)

New metric:

p=calibrametrica(model_growth,flujosexp_finales,1000,100,Delta);
K>> hist(p)

K>> hist(log10(p))

K>> sum(p<.05)
ans =
2

Looks good, but I will repeat it with more repetitions.

Now I test the old metric:

p2=calibrametrica(model_growth,flujosexp_finales,1000,100,Delta,2);
K>> hist(p2)

K>> hist(log10(p2))


K>> sum(p2<.05)
ans =
0

K>> sum(p2<.1)

ans =
3

It seems there was a bias. I will also repeat it with more repetitions.

New Figure 4

Growth 0.1. New maintenance. Old data. New metric.

>> fig_pap_coli_11(1,1)

 

Growth 0.4:

>> fig_pap_coli_11(1,1)

New Figure 3 (Bayes)

>> fig_pap_bayes_09(1,zeros(100))