Eigenvectors and eigenvalues MUST be complex. Still, real solution for the voltage is possible (each eigenvector/value has another one which is complex conjugate. If the modulus of the coefficient of both is the same, the final linear combination is real).
With no membrane conductance:
>> M=conectividad2matrizsistema(todas.A_chem’,todas.A_ej,todas.GABA,1,1,0);
>> V0=zeros(279,1);
>> solucion=matrizsistema2solucion(M,V0);
>> plot(solucion.autovalores,’.’)
This figure matches with Figure 8 of Mitya’s paper (y axis is imaginary part)
We see that there are positive eigenvalues. This has two consequences:
– Diverging voltage.
– Apparently some computations are not performed correctly. I get non-negligible imaginary parts in the voltages.
I see that I need about 30 in the membrane conductance to get all eigenvalues negative:
>> M=conectividad2matrizsistema(todas.A_chem’,todas.A_ej,todas.GABA,1,1,30);
>> solucion=matrizsistema2solucion(M,V0);
>> plot(solucion.autovalores,’.’)
FIRST EXAMPLE: Excitation of neuron 1.
>> V0=zeros(279,1);
>> V0(1)=1;
>> solucion=matrizsistema2solucion(M,V0);
>> V=solucion2voltajes(solucion,0:.001:.5);
>> plot(V(1,:))
>> plot(V(2,:))
And so on…
SECOND EXAMPLE: Random excitation
>> V0=rand(279,1);
>> solucion=matrizsistema2solucion(M,V0);
>> V=solucion2voltajes(solucion,0:.001:.5);
>> imagesc(V)
What are those ‘rough’ zones?
>> plot(V(149,:))
What the…?
7 July 2009 at 8:11 pm
Y si ordenas las neuronas por posicion en el animal y excitas una sensorial en la nariz. Ves alguna propagacion a lolargo del animal? Un plot como eltuyo de colorines pero ordenando por posicion en animal.
7 July 2009 at 8:12 pm
Bueno, si recibe muchos inputs es posible…