It seems that the most deviated neurons are the same in both cases:
>> alfa=0.05; beta=1.5;
>> pos_cuad=coste2pos_cuad(todas.A*alfa,todas.M*beta+todas.S,todas.f);
>> alfa=10^-1.1; beta=10^-.9; pot=.5;
>> [pos_cm,omega_general]=coste2pos_restofijas(todas.A*alfa,todas.M*beta+todas.S,todas.f,todas.pos_real,pot,.2);
>> desv_cuad=abs(pos_cuad-todas.pos_real);
>> desv_cerocinco=abs(pos_cm-todas.pos_real);
>> mean(desv_cuad)
ans =
0.0879
>> mean(desv_cerocinco)
ans =
0.0911
>> figure
>> plot(desv_cuad,desv_cerocinco,’.’)
Some neurons are quite deviated in one case and not the other. However, it seems that these neurons have shallow costs for both cases, as we see when we use the predictions of the quadratic case for the deviations of the 0.5 case (note that beta is very different in either case):
>> alfa=0.05; beta=1.5;
>> omega=sum([todas.A*alfa todas.M*beta+todas.S],2);
>> figure
>> plot(desv_cerocinco,omega,’.’)
Leave a Reply