Comparison of deviations for the cases quadratic and 0.5

It seems that the most deviated neurons are the same in both cases:

>> alfa=0.05; beta=1.5;
>> pos_cuad=coste2pos_cuad(todas.A*alfa,todas.M*beta+todas.S,todas.f);
>> alfa=10^-1.1; beta=10^-.9; pot=.5;
>> [pos_cm,omega_general]=coste2pos_restofijas(todas.A*alfa,todas.M*beta+todas.S,todas.f,todas.pos_real,pot,.2);
>> desv_cuad=abs(pos_cuad-todas.pos_real);
>> desv_cerocinco=abs(pos_cm-todas.pos_real);
>> mean(desv_cuad)
ans =
>> mean(desv_cerocinco)
ans =
>> figure
>> plot(desv_cuad,desv_cerocinco,’.’)

Some neurons are quite deviated in one case and not the other. However, it seems that these neurons have shallow costs for both cases, as we see when we use the predictions of the quadratic case for the deviations of the 0.5 case (note that beta is very different in either case):

>> alfa=0.05; beta=1.5;
>> omega=sum([todas.A*alfa todas.M*beta+todas.S],2);
>> figure
>> plot(desv_cerocinco,omega,’.’)


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: